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Figure 1: Speculative Execution for Visual Analytics. A model optimization process defines a path through the model state space
(shown with only three dimensions here for simplicity). Speculative Execution proactively and automatically computes alternative
model states in sandboxes and presents them using delta-visualizations, comparing them to the current model. Speculative
Execution can be triggered either through user interaction or model quality metrics.

ABSTRACT

We propose the concept of Speculative Execution for Visual Ana-
Iytics and discuss its effectiveness for model exploration and opti-
mization. Speculative Execution enables the automatic generation
of alternative, competing model configurations that do not alter the
current model state unless explicitly confirmed by the user. These
alternatives are computed based on either user interactions or model
quality measures and can be explored using delta-visualizations. By
automatically proposing modeling alternatives, systems employing
Speculative Execution can shorten the gap between users and mod-
els, reduce the confirmation bias and speed up optimization pro-
cesses. In this paper, we have assembled five application scenarios
showcasing the potential of Speculative Execution, as well as a po-
tential for further research.
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1 INTRODUCTION

In many disciplines, domain experts have to create and validate mul-
tiple possible solutions to a current situation. With the identification
of a best possible outcome, a solution can be pursued. In politics,
simulations and anticipations have been an integral part of success-
ful campaigns for a long time: politicians and their advisers prepare
for different, likely outcomes of an event or a meeting. This allows
them to be prepared for different situations that might come up and
ensures that they can react in a fast, yet precise way. Similarly, politi-
cians and involved policy analysts create, analyze, and compare al-
ternative solutions before a policy is to be implemented [25]. Al-
though most of the potential solutions will not be needed in the end,
their preparation is imperative to guarantee a systematic and timely
decision process. In the world of computers, CPUs, for instance,
pre-compute conditional code blocks before the outcome of the con-
dition is known in order to avoid waiting and doing nothing. Simi-
larly, multiple pages are fetched from disk or from memory, even
when only one has been requested. All of these examples employ
Speculative Execution, the principle of preparing or precomputing
the result of a task at a time when it is not needed, but its calculation
is easier or cheaper thanks to synergy effects or idling resources.
We propose to apply Speculative Execution as a concept for Vi-
sual Analytics, as well. There, it can simplify user interactions and
propose parameter changes. It is inspired by the human-in-the-loop
concept that has become increasingly popular in Visual Analytics
over the last years. It integrates human decision-making into the anal-
ysis process to obtain results that are based on semantic understand-



ing and fit the user’s expected mental model. More recently, Endert
et al. proposed a pattern named “the human is the loop” [14]. They
call for new directions of Visual Analytics that focus on recognizing
the user’s work process and “seamlessly fitting analytics into that
existing interactive process” [14]. Speculative execution picks up
this idea and proposes that systems learn the users’ goals from their
interactions and provide optimizations that help to reach this goal
faster. Additionally, Endert et al. also argue that “implicit steering is
perhaps the ultimate form of in-context input”. As Speculative Exe-
cution is aimed at understanding the users’ intentions and executing
them in the model, it can remove the need for unnecessary, explicit in-
teractions, which are instead performed automatically by the system.

In addition to reducing the gap between users and machine learn-
ing models, Speculative Execution can also be helpful for model
optimization and model understanding. As a consequence of the in-
creasing complexity of (machine learning) models, interactions with
model visualizations are important to foster model-understanding
and trust-building [22]. However, these interactions are not always
straight-forward. For example, Lee et al. have found that even “seem-
ingly small changes can have unexpectedly large consequences” [21]
on the output of the popular topic model LDA [4]. This often leads
to users being cautious when interacting with models in fear of
“breaking something” [9]. To avoid potentially worsening the cur-
rent model, Speculative Execution provides isolated computation
environments. In those, changes can be applied speculatively. In
combination with a delta-visualization between two model states,
this allows users to preview the model changes introduced by their
interaction in a focused manner.

We deem Speculative Execution (SpecEx) particularly beneficial
for the typical Visual Analytics (VA) scenarios. First, it provides the
means for effective model optimization and refinement towards the
users’ tasks and data. Second, it can help prevent confirmation bias
by showing potential modeling alternatives. Finally, it is well-suited
for mixed-initiative user-guidance. However, SpecEx has not yet
been formally introduced to VA. We demonstrate the applicability
of SpecEx for guided Visual Analytics in five usage scenarios in
Sect. 4. These scenarios also highlight that SpecEx integrates well
with existing VA concepts that will be introduced in Sect. 2.

The contributions of this paper are (1) the introduction of the con-
cept of Speculative Execution to Visual Analytics; (2) an illustration
of the value of Speculative Execution in five usage scenarios; (3) de-
sign considerations and an implementation model for Speculative
Execution; (4) the identification of open research questions for effi-
cient application of Speculative Execution.

2 BACKGROUND

SpecEx as a concept is broadly applicable in many VA scenarios.
We discuss related VA techniques here, and present derived usage
scenarios in Sect. 4.

Van den Elzen and van Wijk have introduced a visual exploration
technique called “Small Multiples, Large Singles” [33] that is simi-
lar to Speculative Execution. Starting from a “large single” visualiza-
tion a small multiples visualization shows alternative models, model
parameters, visual mappings, or visualization techniques to the user.
Following an alternating sequence of large singles and small mul-
tiples, users can either use the tool to explore the data space or to
adjust both the model and visualization for their use case. While the
approach focuses on the navigation-support provided with the small
multiples (e.g., by trial-and-error), the SpecEx concept also incorpo-
rates the suggestion of next step that may be meaningful to succeed
in some task.

SpecEx integrates well with the concept of provenance tracking.
Systems like AVOCADO [32], VisTrails [6] or SenseMap [23] fo-
cus on visualizing the provenance of results during or after an analy-
sis session. Some systems also give users the possibility to revert
to a previously seen model configuration. SpecEx enables a more

straightforward comparison of two model states, as they can both be
instantiated in isolated environments at the same time. Combined
with a delta-visualization this provides a powerful tool for under-
standing how specific interactions have influenced the model build-
ing process.

If Speculative Execution is based on quality metrics instead of
user interactions, it becomes an alternative to Visual Parameter
Space Analysis, e.g., conducted by Sedlmair et al. [28]. In this case,
sandboxes would be created with different parameter configurations
following the speculation dimensions presented in Sect. 5.2. How-
ever, as SpecEx is an interactive, mixed-initiative approach, the ex-
ploration of the search space and computation of alternative models
can be more restricted to those in which users are interested. Also,
this interactivity allows Speculative Execution to modify the param-
eter sampling methods, focusing on parameter ranges that seem to
be relevant to the users in a given analysis session.

The concept of SpecEx pairs well with progressive computation.
As SpecEx observes user interactions with the system (see Sect. 5.1),
systems can observe which sandboxes users are most interested in,
and progressively refine their models. This allows initial sandbox
models to be computed with a lower degree of detail, enabling
the computation of more sandboxes with the same resources. The
necessary details can then be computed once they are necessary.

3 SPECULATIVE EXECUTION As A VA CONCEPT

We first define Speculative Execution and Computational Sandboxes,
as well as the Model Search Space. We then combine the introduced
concepts into an implementation model that can be applied to existing
Visual Analytics systems.

3.1 Definitions

All three of the important terms have previously been used in differ-
ent areas of computer science. We present related definitions that
are tailored towards the use of the terms in Visual Analytics.

Speculative Execution Typically, Speculative Execution de-
scribes a set of CPU optimization techniques like branch predic-
tion [39] or data prefetching [16] that can improve their performance.
In the context of Visual Analytics, we describe SpecEx as the proac-
tive computation of alternative, competing model states that are iso-
lated from the current model state and do not influence it. On the
one hand, such a proactive computation can be triggered by user in-
teraction. In this case, the computation completes the interaction
or performs similar operations. More detailed distinctions will be
made in Sect. 5.1. On the other hand, the computations can have
the goal of model optimization. They are then typically triggered by
model quality metrics and can, for example, be used to explore dif-
ferent parameter settings. Combining these two aspects, we define
SpecEx as follows:

Speculative Execution describes the proactive, near real-
time computation of competing model alternatives that do
not influence the current model state, explores the model
state search space, and is triggered by either interaction
or quality measures.

Comparing the differences between two competing model states,
users can decide whether any SpecEx was useful or not. If yes,
they can accept the proposed sandbox, or else reject it. Using these
two simple operations, users can steer how the model state space is
searched. Over time, SpecEx can learn from this user interaction and
rank proposed sandboxes higher if they conform to similar schemas
as sandboxes that have previously been accepted by the user. This
improves the quality of suggestions and facilitates the intended tasks
of model optimization and exploration further. Imagining model op-
timization as a “walk” through the model state space, SpecEx allows
users to “look to the left and right of the path”. This differentiates
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Figure 2: Implementation architecture for Speculative Execution
in Visual Analytics. The Speculative Execution and Model Quality
Monitor components can be retrofitted to existing VA systems, to-
gether with one or multiple Model Delta Visualizations.

SpecEx from “normal” human-in-the-loop Visual Analytics that in-
corporates the user without necessarily focusing on exploration or
proposing modeling alternatives.

Sandboxes—isolated containers holding models— and the model
state search space—the theoretical, high-dimensional space of pos-
sible model configurations—will be introduced and defined in the
following paragraphs.

Sandboxes In general, sandboxes are environments with lim-
ited connections to their respective outside world, enabling a sepa-
rated and encapsulated computation. In computer science, the term
sandbox is often used to describe shielded environments or local
working copies that are used to execute some task. Application
areas include virtual machines, software installation facilities, or
security-related environments. Sandboxes in visual analytics have
often been used in collaborative or multi-device environments to
show all users different and tailored views of the data [19]. “Sand-
box” is also the name of a visual sensemaking system introduced
by Wright et al. [36]. Additionally, “sandboxes” is a term often
used in relation with computer- and system-security: browsers use
JavaScript sandboxes [7, 18] and systems move suspect executables
to sandboxes [37].

Building upon these characterizations and examples, we adopt
the notion of sandboxes and describe them as isolated computation
environments that can be initialized with any model state. The result
of any sandbox computation should always be a valid model state,
such that any model can be replaced with a sandbox derived from
it easily. These sandboxes can help to explore different, alternative
hypotheses, which analysts often do to avoid confirmation bias [17].

Search Space The search space for Speculative Execution
is defined by all possible model states, given by the input data
and all parameters. SpecEx defines any number of these inputs
as speculation dimensions that can be modified before starting a
proactive computation. As a result, the Speculative Execution Space
is significantly smaller than the entire model state space, as it does
typically not make sense to change all variables before launching a
computation. An elaboration on the different potential sizes of the
search space can be found in Sect. 5.3.

3.2 Implementation Model for VA with SpecEx

Having defined the concepts of Speculative Execution, we now de-
scribe how it can be integrated into an existing VA workspace. The
result of such an integration is shown in Fig. 2. The central com-
ponent is the VA workspace itself with visualizations of both the

model and, if available, a set of quality metrics computed by the
Model Quality Monitor. The Speculative Execution Component can
create model sandboxes and instantiate them with copies of the cur-
rent model. These sandboxes can either be visualized individually
or in a delta-view comparing them to a different model state; typi-
cally the “original” model from which the sandbox was started. The
Speculative Execution Component also constantly monitors the VA
workspace and tracks the users interactions, searching for patterns
and trying to determine the users intentions. The possible outcomes
of this process will be described in Sect. 5.1. Thus, any sandbox can
either be triggered by observed user interactions or, more simply,
by the Model Quality Monitor. This component combines multiple
metrics indicating the quality of the model, and employs different
strategies for combining these metric values into a “trigger-decision”.
This generic implementation model can be taken into account when
designing new Visual Analytics systems, or be retrofitted to existing
VA systems thanks to its modularity. It follows the architecture for
“human centered machine learning” presented by Sacha et al. [26].
Speculative interaction ties into the Validation & Interaction stage
of their proposed framework.

SpecEx can reuse existing techniques to determine the users inten-
tions [5,8], and employ them in sandboxes. The ranking and proposi-
tion of sandboxes to the user can be incrementally improved through-
out the analysis session. For example, a higher weight can be given
to those sandboxes that have been created according to a schema
that has often been accepted by the user in the past. However, such
adaptations to the weighting scheme have to be carefully considered
to avoid creating and confirming biases in the user’s mental model.

4 USAGE SCENARIOS

To illustrate the idea of Speculative Execution in Visual Analytics,
we now discuss five usage scenarios in which SpecEx was either
already applied successfully, or that would build a valuable basis for
an extension towards SpecEx. The first scenario reports the results
of the initial implementation of SpecEx for topic modeling. The
second and third scenario highlight the use of SpecEx for implicit
steering and user guidance, respectively. Scenario four exemplifies
the value of SpecEx for cooperative VA, and scenario five shows
that SpecEx can also be applied to visualization and is not limited to
VA. Except for scenario one, these usage scenarios are hypothetical
and have not been implemented yet. The small figures under each
usage scenario repeat the implementation architecture model from
Fig. 2. The individual components that that are “active” in each of
the scenarios have been coloured in blue, highlighting the versatility
of SpecEx. Different amounts of sandboxes have been coloured
throughout the examples and represent whether a small, medium or
large number of sandboxes are expected to be computed.

4.1 Model Optimization

Topic modeling is a popular technique to segment a text corpus
into thematically related clusters. Consequently, refining the re-
sults of topic models and adapting them to a particular set of
users, data, and tasks, is an active area of research [10]. In
our recent work, we examined the optimization of the Incre-
mental Hierarchical Topic Model (IHTM) using SpecEx [11].
This model represents topics as a tree—
with leaf nodes being documents, and 1 specuiative [~}
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Figure 3: Example of two-dimensional SpecEx over time and differ-
ent optimization strategies. Three optimization strategies for an in-
cremental topic model are triggered in sandboxes and forecast over
the next ten document inserts. The resulting models are sorted ac-
cording to their quality, and presented to users as a diff with the cur-
rent model. Applying their domain knowledge, users select the best
model to continue the process with.

individual sandboxes whenever any (combination) of the metrics de-
clines. Once the sandbox computations are complete, the results can
be ranked according to their measured quality and be presented to
the user. We have implemented and successfully tested such a sys-
tem in our previous work [11]. The topic trees of two topic models
are merged into a single tree, and added, moved and removed topics
and documents are highlighted to help users see differences between
the two models and select a sandbox to continue the computation
with. This workflow is outlined in Fig. 3.

As the user observes the model building process of the IHTM
on the “20news” dataset, a document from the “atheism” group is
added to the “christian” topic, making it too broad and leading to
Speculative Execution. The user inspects the proposed optimization
leading to the highest measured quality improvement: merging the
two topics “mideast” and “baseball”. While this merge optimizes the
quality metrics, the user quickly rejects it, employing their semantic
understanding. Instead, they select a different sandbox in which the
erroneously combined “car” and “gun” topics have been split.

Using SpecEx the analysis system was able to integrate the user
into the model steering process seamlessly. Instead of defining must-
link and cannot-link constraints to optimize topics, the user could
select from a set of prepared optimizations. Especially in topic
models, where often subtle semantic differences decide over the
quality or even correctness of a topic attribution, SpecEx can help to
achieve good results by exploring a wider area of the search space
instead of only a single model.

4.2 Implicit Steering

Our second example addresses the task of labeling datasets
which is increasingly supported with
VA techniques having the human in the M= speculative
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settings. In their current state, these |2 ‘
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VA systems support users in the label-

ing process with visual-interactive in- "} B O
terfaces showing data characteristics | — ‘
as well as information about the current model state [3]. Example
labeling interfaces include scatterplots [2] in combination with di-
mensionality reduction [27], radvis-like visualizations [29], or list-
based interfaces [24], e.g., in combination with active learning mod-
els [30]. Interaction techniques that enable the assignment of labels
are based on simple item selection or drag-and-drop facility. Users
of the systems start by creating a small set of training data with some
labeling interactions, triggering the machine learning algorithm to
be re-trained in an iterative way. Intermediate results of the mod-

els are visualized in the labeling interfaces which closes the human-
centered feedback loop [3].

Observing these interactions such a system could understand
and learn the pattern in the users’ interaction. It could then find
potentially misclassified data instances by using quality metrics
or assessing the spatial relationships of data instances in the high-
dimensional data space or the visual space, or both. In a series
of parallel sandboxes, the system could “auto-complete” different
interaction patterns the users have started, and present a list of
changes together with the re-trained alternative models. The user
can then inspect the list of instances which switched their prediction
of the machine learning model and accept or reject the sandbox.

If the system can detect and understand these semantic interac-
tions [14] as implicit steering commands, it can learn about the
user’s intuition (intents [38]). It can then apply this intuition to the
remaining data, removing the need for users to explicitly complete
their interaction pattern, reassigning even more instances.

4.3 User Guidance

Recent work in Visual Analytics has often focussed on measuring
and avoiding confirmation bias [1, 34]. .
Speculative Execution can help to pre- | =
vent confirmation bias by providing al-
ternative sandboxes, as well. A differ-
ent approach has been taken by Wall et :
al. with their system PODIUM [35]. It "%
aims at making the users mental model
visible by letting them rank data according to their intuition and
preference. In their example with college football teams, users drag
and drop some teams that they have an opinion about to a new posi-
tion in the list. Additionally, users can indicate whether the model
should put more or less weight on individual features. The system
then learns feature weights from that ranking and reorders the list
according to the learned model. As a result, the relative differences
between teams ranked by the user can change. Here, Speculative
Execution could explore alternative feature weightings that lead to
a ranking that is closer to what the user originally expressed. The
system could then guide users and highlight that changing certain
feature weights would lead to the model more closely representing
their originally expressed order. Users can then verify the changes
and accept them, if they agree. Alternatively, this could lead to users
realizing that the proposed changes do not fit their mental model.
As aresult, they might start questioning the said model, exploring
the data further, and overcoming their biases. This scenario shows
that SpecEx can not only be used to speed up model optimization or
auto-complete user interactions. Instead, it can be used to explain
model changes by highlighting features with a high impact on the
current modeling situation.
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4.4 Cooperative Visual Analytics

Linguists are interested in classifying questions on whether they are
information-seeking (ISQ) or non-
information-seeking (NISQ), i.e.,
rhetorical [31]. Their data consists of
transcripts of conversations or written
text. The task of an expert analyst is
to train a classifier using a VA system.
Such a system might, for example, pro-
vide the context before and after the question, as well as information
on the respective speakers. This task is interesting for cooperative
analysis because discussions with linguists have shown that there is
frequent disagreement on whether a question is an ISQ or not, even
between experts. In current classifier training systems, this would
lead to prolonged decisions on how to classify training data. With
Speculative Execution, disagreeing experts can create two sandboxes,
and each classify some training data according to their understand-
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ing. If this task is executed on a large, collaborative touchscreen,
both experts can even train their model in parallel. After retraining
the respective models, the experts can compare which model cap-
tured the particularities of the current dataset better. In a provenance-
tracking view, they can compare which training decisions were most
important for making one of the classifiers more adapt to the data.
After a short discussion, the experts can now agree on a common
understanding of ISQ/NISQ that is suitable for the dataset.

4.5 Speculative Execution beyond Machine Learning

Speculative Execution can also be extended beyond machine
learning scenarios. One possible ex- . ‘ ,
tension is towards visualization sys- T spate .
tems that focus on presenting data | v ot
without an underlying model. In this | |~/
scenario, we use the example of a sys-
tem visualizing geographical move- i
ment data of cars on a map. The “en- | — ‘
virocar” data set! contains GPS tracks of driving cars and is anno-
tated with speed, the fuel consumption, rpm, et cetera. As it contains
about 1.7 million rows, it cannot be visualized on a map without
some preprocessing and aggregation. One such aggregation step is
the bundling of trajectories to avoid overplotting. Additionally, a
system may show a summary of the presented data in a detail panel.
Such information is, for example, useful to families searching for
a home in a quiet area without too much traffic and with low emis-
sions. To make the interaction with the system more seamless, it
uses eye-tracking to determine regions that users are interested in.
Once such a region is determined, it zooms in and provides more de-
tail. In combination with SpecEx this zooming process is smoother.
While the system is still determining whether a user is interested in
aregion or was only glimpsing at it, it can already precompute the
aggregations on the new level and prepare the detail panel. If the
zoom-in action is performed later, the data is already preprocessed
and can be displayed.

5 ASPECTS OF SPECULATIVE EXECUTION

Having shown the applicability of SpecEx in various VA scenarios,
we provide a list of theoretical considerations. They stem from both
our experience with implementing SpecEx for topic modeling and
the hypothetical usage scenarios. We conclude by providing design
principles for SpecEx.

5.1 Semantic Complexity of Interactions

User interaction can build the basis for relevant input for SpecEx.
Depending on the level of semantic complexity of such an interaction,
the goals of the Speculative Execution are different. We define
semantic complexity as the amount by which the mental model of
the user changes by performing this interaction. The different levels
will be described in the following.

L1: Start of Interaction Once the user has started an interac-
tion, the system can assess what the user is trying to achieve. It can
then try to predict how this interaction can be finished using extrapo-
lation techniques. The goal of Speculative Execution on this level is
to prepare the context of the interaction target. During a drag and
drop operation, for example, such computations could include the
search for relevant “drop targets”.

L2: Completion of Interaction Every interaction that was
completed can build a basis for similar interactions that may be
performed in future. Whenever an interaction has been finished, the
system can try to predict the next interaction on a similar level of
complexity that the user might want to perform. The goal of such
speculations is to guide the user in exploring the potential impact of
interactions. Also, Speculative Execution at this level could make

lhttps://old.datahub.io/dataset/envirocar, last accessed 7/15/2018

users aware of data points that might have been missed, for example
when removing outlier nodes.

L3: Repetition of Interactions In many cases, users combine
different low-level interactions to solve a higher-level intent [38].
As such, combinations of interactions are at the highest of the se-
mantical levels of speculation that we want to address. Tracking and
contextualizing of low-level interactions to make sense of user in-
tents builds the basis for the support of SpecEx at this level. Once a
user intent has been identified, the system can begin searching for
similar intents that users might have, and that could be solved with a
similar set of repeated low-level interactions.

To some extent, the goal on all levels of semantic complexity is
“User Intention Guessing”: the system needs to determine the im-
plicit interaction [14] that the user is trying to achieve by perform-
ing the explicit interactions. Once the user’s intention has been iden-
tified, appropriate optimizations, parameter changes, or additional
computations can be searched in a much more focused manner.

5.2 Dimensions of Speculation

Speculative Execution and sandboxes provide the theoretical frame-
work for an efficient, mixed-initiative guidance approach to visual
analytics, extending the Visual Analytics pipeline by Keim et al. [20].
Whenever SpecEx is not proposing optimizations to complete user
interactions, it can target improvement in the measured model qual-
ity and prepare alternative models. Their usefulness depends on
the model-specific speculation dimensions. These speculation di-
mensions are defined by parameters or properties of the underlying
model. In any computed sandbox, some of the possible specula-
tion dimensions may be altered with respect to the “original” model.
The following section highlights guidelines for the selection of spec-
ulation dimensions. Although SpecEx is not limited to those, we
present five distinct categories of dimensions here.

Temporal Dimensions Temporal dimensions include the actual
time as well as an iteration number, depending on the model. They
are especially interesting for incremental algorithms. Incremental
streaming models can build a buffer of events or data and “forecast”
the development of the model in any given sandbox. For iterative
algorithms, a sandbox can show the model development over the
next iterations. Progressive sandboxes can be continously refined as
new data becomes available. This can allow users to pursue multiple
model alternatives in parallel, before deciding for one.

Optimization Strategies For various models, direct optimiza-
tions, manipulating the models’ underlying data structures, can be
conceived. Operations could include merging or splitting tree nodes,
changing values of matrices and vectors, or introducing a threshold.
These optimization strategies can be tailored towards known poten-
tial model issues and provide bespoke solutions for these problems,
without having to explore and change the model’s parameters. Such
strategies have been implemented in the system presented in 4.1 [11]
and provide sandboxes avoiding topic chaining or combining small,
overly specific topics into more easily understood generalized ones.

Utilizing bespoke optimization strategies incurs an additional im-
plementation cost for identifying potential model issues and devel-
oping possible solutions. However, it can directly address problems
that would be unintuitive, difficult, or even impossible to change
through model parameter changes.

Model Parameters If no bespoke optimization strategies are
available, the sandboxes of SpecEx can perform a Visual Parameter
Space Analysis [28], creating different sandboxes for different pa-
rameter configurations. However, instead of sampling and precom-
puting the entire parameter space, the analysis can be focused on re-
gions of the search space that are similar to the users current model.
As soon as users start exploring new regions of the model state space,
new sandboxes can be created and prepared in the background.



Input Transformations If the preprocessing pipeline is inte-
grated into the Visual Analytics system, SpecEx sandboxes can uti-
lize these preprocessing algorithms to transform the underlying data.
Examples of such transformations include a stricter outlier-removal,
filtering out stopwords from a collection of text documents, or intro-
ducing minimum and maximum-thresholds for time-series data.

Algorithm Modifications  Ultimately, SpecEx sandboxes can
also explore modifications of the original model or any of its parts.
They can replace similarity functions, feature weighting schemes
or merging strategies, to name just a few. As this dimension is spe-
cific to the underlying model, it can be very effective and powerful.
As with any Input Transformations, the system needs to explicitly
inform the users of any changes made to these dimensions. Modifi-
cations here might have an impact on the user’s mental model and
how well it fits.

5.3 Towards Design Principles

In the following, we provide design considerations for effective
Speculative Execution in five areas.

Speculation Dimensions When performing speculative pa-
rameter space analysis or employing bespoke optimization strategies,
there is a trade-off between the number of sandboxes that are created
and their usefulness. As one goal of Speculative Execution is a more
guided exploration of the model state space, more sandboxes are ben-
eficial: they lead to more model configurations being calculated and
presented to the user. However, in addition to the increased need for
computational resources, users cannot and will not inspect and com-
pare a large number of speculative sandboxes. In our first implemen-
tation of Speculative Execution for the optimization of topic models,
we offered users the results of seven speculative optimization strate-
gies [11]. In the evaluation study, users often focused on the top-two
or top-three optimizations according to our provided ranking. One
possible reason is that model comparison is a difficult task. It might
be alleviated by effective delta-visualizations, but users will remain
unable to compare all sandboxes that can be computed.

Runtime Depending on the level of semantic complexity of
an interaction triggering speculative execution different runtime re-
quirements apply. With increasing complexity of the performed in-
teractions, increasingly complex Speculative Executions are neces-
sary to support and guide the user. However, the runtime require-
ments for these more “complex” sandboxes triggered by L2 or even
L3 interactions are not as strict as for those triggered by L1 interac-
tions that need to be executed while the user is performing an inter-
action like dragging and dropping an object. Here, the aim should be
on focused and short computations of less than 500ms. As soon as
the user ends the interaction, the speculation becomes meaningless.
However, the resulting sandboxes for L2 and especially L3 interac-
tions are likely still useful after a couple of seconds. It is important
that such longer-running speculations do not block the user interface
as to not interrupt the analysis workflow.

Search Space Size As we have previously implemented
SpecEx for IHTM [11], an incremental topic model building a tree
structure, we elaborate on the size of the individual search- and
model-spaces using a concrete example. We consider a corpus con-
taining 280 documents (k) and a two-dimensional speculative execu-
tion with n = 7 optimization strategies and » = 10 additional docu-
ments being inserted into the model from the buffer during a spec-
ulation. Running the model without optimization will produce ex-
actly one topic-tree as its output. With SpecEx, we compute at most
(k/b) - n =196 sandboxes. This allows us to involve the user in the
algorithmic decision-making process but is significantly more scal-
able than considering all possible optimization paths (even consider-
ing the buffer), which would result in n*/b) ~ 102 options. Even
though this would be an exponentially large search space, it is still

multiple orders of magnitude smaller than all possible trees an incre-
mental algorithm would consider (k! = 10 6 , or all possible trees

with k nodes (k=2 a2 10680), ThlS example shows that the Specu-
lative Execution reduces the factorial search space to a linear one.
This is due to the use of only two dimensions with a very limited
set of possible values. Here, careful considerations weighing search
space exploration against computation time are necessary. One inter-
esting area for future research is the formalization of a cost-benefit
model for Speculative Execution that can be used as guidance when
selecting speculation dimensions.

Quality Metrics Whenever Speculative Execution is not trig-
gered by user interaction it needs quality metrics to trigger and as-
sess sandboxes. The user typically performs a multi-objective op-
timization of these metrics when trying to improve a model. As a
result, good consensus strategies between the used metrics are nec-
essary to sort the computed sandboxes before presenting them to the
user for exploration. Note that it is typically not possible to fully
automate this optimization process, as most quality metrics do not
capture (all) semantic details.

Delta-Visualization For an efficient SpecEx, an effective delta-
visualization is necessary to highlight the differences between the
current model and a selected sandbox. This visualization needs to
be tailored to the underlying model, the visualization from which
the Speculative Execution was triggered, and the number of changes
introduced in the speculation. Gleicher et al. [15] introduced vari-
ous patterns for visual comparison. While different patterns are use-
ful in different situations, we argue that explicit encoding should
be present in comparative sandbox visualizations to help users to
quickly focus on the introduced changes that decide over accepting
or rejecting the proposed sandbox. For some tasks like labeling, a
list of elements with changed labels might be more useful than a
complex visualization trying to highlight the differences between
two dimensionality-reduction results.

5.4 Research Opportunities

With Speculative Execution being a novel concept in Visual Analyt-
ics, many interesting questions remain.

Mapping Interaction to Optimization Understanding the in-
tent of user interactions is paramount for effective Speculative Ex-
ecution. While systems using implicit steering exist today, it is an
open field of research how interactions on the different levels of se-
mantic complexity can be understood and mapped to concrete goals
for a speculative sandbox. Endert et al. have already identified the
capturing of user interaction intentions as relevant future work [12].
In addition, they have elaborated on design considerations and confi-
dence levels of captured interactions [13]. Further research should
investigate how such captured interactions can be generalized and
re-applied to complete the user’s semantic interactions.

Cost-Benefit-Model  As was alluded to in the previous section,
choosing the wrong (number of) speculation dimensions is detri-
mental to the usefulness of SpecEx. An information-theoretic cost-
model for Speculative Execution could define the size of the search
space, the number of visited states, the computation time and the
cognitive load on users. Such a cost-model would then allow in-
formed choices on the sandboxes SpecEx computes.

Interaction Design  Speculative Execution constantly computes
alternative models that users might want to explore and needs to
present them for inspection. However, systems should not constantly
interrupt the analyst’s workflow for model-comparison. Further
research should be conducted to determine when and how to show
sandbox results, and when to refrain from interrupting the user.
Furthermore, research should investigate how different presentation
styles of SpecEx results impact the creation and confirmation of
biases.



6 CONCLUSION

We have introduced Speculative Execution as a new methodology for
Visual Analytics. Based on a definition and formalization of SpecEx
for VA, we presented five possible usage scenarios that demonstrate
the applicability of SpecEx in VA. Finally, we characterized differ-
ent aspects of SpecEx in VA, showing that SpecEx is a multifaceted
concept that can support VA in different ways. The primary benefits
of successfully adopting SpecEx into the VA processes are multi-
ple ways in which user guidance can be provided algorithmically,
conflated with visual-interactive interfaces. Next steps include the
implementation of Speculative Execution in several VA applications
to further demonstrate the applicability of SpecEx for guided VA.
Likewise, the elaboration of formerly discussed research opportuni-
ties will lead to new insights.
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